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Abstract. Equations for the bipolaron wavefunction, ground-state energy and effective nuss 
ate derived which are exact in the strong-coupling limit. The results we obtained for large 
bipolarons in an arbitrary number of spatial dimensions (D). We apply our results to the cases 
D = 1.2. 3. 

1. Introduction 

Two identical charged particles (electrons), placed in a polar or ionic crystal, interact with 
the lattice vibrations which induces an attractive retarded force between them. Under certain 
conditions, a bound state can exist of two electrons surrounded by a common cloud of virtual 
phonons. Such a quasi-particle is referred to as a bipolaron. Interest in bipolaron properties 
has been renewed by the possibility of a bipolaron mechanism for  high-T, superconductivity: 
bipolarons act as charged bosons undergoing a Bose-Einstein condensation in real space. 
For large bjpolarons, such a mechanism was studied by Vinetskii and Pashitskii [I] and 
then developed by Emin and Hillery [Z]. The Antwerp group I31 and Bassani et al [4] 
recently published some papers concerning the stability region for bipolaron formation and 
the possibility of a bipolaron mechanism for high-T, superconductivity. 

The prerequisite for such theories is the very existence of bipolarons. Previously, 
various bipolaron characteristics such as their ground-state energy, effective mass, radius 
and number of virtual phonons (see review article [5 ]  and references therein) have been 
investigated. The main conclusion of the majority of the published papers is that bipolarons 
can exist in a particular range of critical values for the coupling constants of the competing 
interactions: the attractive electron-phonon (a) and repulsive Coulomb (U) interaction. 
For bipolaron formation, the repulsive force should be weak enough while the electron- 
phonon interaction has to be sufficiently strong to overcome the repulsion. Previously, the 
critical values of the coupling constants were determined by different authors using different 
variational upper estimates for the bipolaron energy. The advantages of such variational 
approaches are obvious: these methods lead to estimates of the bipolaron characteristics 
for the whole range of values of the electron-phonon coupling constant, especially the 
intermediate values. 
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Polaron effects [6] are important for many polar dielectrics and semiconductors of the 
A"'Bv and the A"BVr groups. Such materials have electron-phonon coupling constants in 
the range of small and intermediate values. In addition to mobile charge carriers in solid- 
state systems, there are also different classes of systems with anomalously high values of 
the electron-phonon coupling constant, for example, protein globules and solvated electrons 
in liquids (see, e.g., papers by the Pushchino group [7]). 

The goal of the present paper is to derive exact equations describing bipolarons in 
the strong-coupling limit. The same limit for the single polaron was investigated in early 
papers by Pekar, Landau and Pekar, Bogolubov, and Tyablikov [SI. Numerical calculations 
for 3D (bulk) polarons have been performed by Miyake 191 and for 2D polarons by Wu etal 
[ 101. In a recent paper by Bogolubov [ I l l ,  the procedure for deriving the strong-coupling 
equations was simplified. Here we generalize it  to the case of the bipolaron and improve 
this approach to avoid divergences. 

The formation of the bipolaron and the existence of excited states of both polarons 
[12-141 and bipolarons is important in electron transfer processes in a bread variety of 
condensed matter. A lot of work has already been performed on the 2D and 3D bipolaron 
ground state [3,4,15.16]. 

The main advantages of the approach used in this paper are that: (i) apart from the purely 
theoretical interest in strongly coupled electron-phonon systems, the equations can serve 
as a test for the accuracy of the so-called 'all-coupled variational' approach to bipolaron 
Characteristics; (ii) in addition to the variational equation, a Schrijdinger equation is also 
derived with which it becomes possible to investigate the excited states of the strongly 
coupled bipolaron (which are not attainable with the usual variational approach [ 141 and 
which, as far as we know, have not yet been investigated); and (iii) the equations are 
applied to the case of the ID bipolaron (tackling the divergences which are inherent to this 
problem). A very thorough study of the ID bipolaron and its excited states can then be 
performed by solving the nonlinear effective Schrodinger equation (see [17]). Apart from 
the characteristics and discussion on the existence of the bipolaron and its excited states, 
some pecularities appear because of the nonlinearity of the equation. 

In many systems, the electrons (or holes) move in planes (e.g. quantum wells, CuOz- 
planes in high-T, superconductors) or along one direction (e.g. quantum wires, polymers). 
Therefore, we will consider bipolarons in a space with an arbitrary number D of dimensions. 
Note that at D = 2 the bipolaron effects are enlarged [4,15,16] compared with the D = 3 
case. 

The present paper is organized as follows. In section 2, we derive the exact equations 
for the bipolaron characteristics in the strong-coupling limit. In section 3, we study the 
equation for the bipolaron ground-state energy and effective mass. Section 4 deals with the 
special case of one-dimensional bipolarons. 

2. Basic equations 

The Frohlich Hamiltonian for two electrons interacting with the phonon field is written as 
follows 
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where rib, )  are the position (momentum) operators of the ith electron, m is the electron 

k and frequency Wk. The potential U ( [ r l  - rzl) corresponds to the direct (Coulomb) 
interaction between electrons and the quantities v k  are the Fourier transforms of the electron- 
phonon interaction. The total momentum of the system is conserved: one can readily verify 
that the operator 

band mass and ak t (ak) are the creation (annihilation) operators of phonons with wavevector 

t f i  = -ihV,, - ihV, + z h k a k a k  
k 

commutes with Hamiltonian (2.1). Therefore, we will consider states for which the total 
momentum is a c-number P, introducing a Lagrange multiplier U. Instead of (2.l), we 
consider the new Hamiltonian 

The Lagrange multiplier v is given by aH(v)/aP = U, which implies that v is the average 
velocity of the system. This allows us to define a total bipolaron effective mass m* at small 
velocities: 

P = m*v + O(v2). (2.4) 

The first step is to transform Hamiltonian (2.3) into H ' ( v )  = U1 H(v)U;' using the 
unitary transformation 

Under this transformation, the total momentum is transformed as follows 

The goal of transformation (2.5) is: (i) to reveal the motion of the centre of mass (CM) of 
the two electrons (which is not the same as the bipolaron CM); and (ii) to take into account 
the recoil effects. The idea for using parameter a was suggested in [I81 and allows us to 
treat the weak- and strong-coupling limits at the same time. When a = I ,  transformation 
(2.5) generalizes the well known Lee-Low-Pines transformation by using the CM coordinate 
of two electrons instead of a single electron coordinate. 

With the above transformation, the Hamiltonian takes the form 

d k)' + c a k a k  [hwk - h k .  v - -hk. (PI +p2)]  + 4m( c h k  a a 
t a U2 

k 2m k 
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The second step is performed using transformation H"(u) = UzH'(w)U;' with 

- c k ( u ) a k )  'I 
to shift the phonon field operators ak + a k  +cr;(w) by c-numbers c k ( w ) .  By this shift, one 
can describe a polaron in the strong-coupling limit as an electron captured by a potential well 
generated by a large classical component of the phonon field. The resulting Hamiltonian 
can be split into two parts: H"(u) = Ho(w) + H,, t (v) .  The first term is the non-interacting 
part which contains the energy of the free-phonon field and the energy of the electrons 
moving in an effective potential 

The other part Hi,, of Hamiltonian (2.3) can be written in a normal-ordered form and will 
play no role in what follows. 

Up to this point, the c k ( w )  are arbitrary c-numbers which will be determined by 
minimizing the energy, The energy is obtained by taking the expectation value of the 
Hamiltonian H ( v )  = &(U) + H,,,(v) over the trial ket 10") = $"(rl, rz) lO),  where 10) 
denotes the phonon vacuum. With the above trial ket, the average (Hint(w)) is equal to zero. 
We find the following energy functional: 

E[@J = (Ho(v)) - E((4vl@u) - 1 )  

where E is a Lagrange multiplier and we have introduced the notation 



Exact equations for bipolarons in the strong-coupling limit 1929 

Furthermore, note that Hamiltonian (2.3) is symmetrical under a permutation of the 
electrons. Therefore, the wavefunctions should be either symmetrical (para-bipolaron) or 
antisymmetrical (ortho-bipolaron): $,,(TI, T Z )  = +&(TZ, T I ) .  

The variations of the functional E[&,] with respect to Ck(v) and cE(w) determine these 
c-numbers as follows 

. (2.13) 2Vk 'P3)  

f i o k  - h k .  w - - 2m a hk . (p t  + ~ z ) + ~ [ u l k . ~ f i ~ I s ( v ) l ' + ( h k ) ' ]  
ck(V) = - 

The variation of the functional E[q&,] with respect to w leads to a link between the 
average velocity and the total bipolaron momentum: 

(2.14) 

On the other hand, the averaging of operator grf = CJzPU;' with Pf and U2 defined by 
equations (2.6) and (2.8), respectively, results in 

( l i t ! )  = (PI + p z )  + 2mw + (1 - a )  Cfiklck(w)l2.  (2.15) 
k 

Comparing equation (2.14) with (2.15), one obtains the relation 

(PI + Pz) = a x f r k  ICk(v)Iz (2.16) 
k 

which simplifies expression (2.13) for the coefficients Ck(V) considerably: 

(2.17) 

Introducing the notation M = 2m l a 2 ,  we may represent the denominator of expression 
(2.17) as follows 

(2.18) 

which corresponds to the energy difference of a free moving particle with momentum Mw 
and the state which has emitted one phonon with momentum Rk. Thus, the parameter M 
should be close to the bipolaron effective mass m*, which is large in the strong-coupling 
limit or, equivalently, the parameter a is small in this limit. Notice that for w f 0 it is not 
permitted to choose a = 0 because this would result in an expression for Ck(W) in which the 
denominator can be equal to zero for some value of the phonon momentum k. In theories 
without a cut-off this leads to divergences, which is the main theoretical disadvantage of 
the approach in [ l l ] .  Taking into account the electron recoil energy ( ~ ~ / 4 m ) ( R k ) ~ ,  this 
difficulty is avoided. Also, for parameter a ,  in this recoil term, we obtain variationally 
an equation. Finally, the variational equation 8E[$J/8$: = 0 leads to the Schrodinger 
equation for the wavefunction $"(T,, T Z )  where the Lagrange multiplier E plays the role of 
the energy of the system. This equation, and the one for a ,  will be presented in the next 
section. 
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3. Bipolaron ground-state energy and effective mass 

In order that the ground-state energy and the effective mass are well defined, one has to 
consider the limit of a slowly moving bipolaron. First, we consider the bipolaron effective 
mass. When z1 tends to zero, terms of order w2 may be neglected. The wavefunction 4" at 
w = 0 is denoted by & and all averages are now performed over & rather than over 4". 
Expanding Ck(V)  of equation (2.17) in powers of v and substituting it into equation (2.14), 
we arrive at the following expression for the bipolaron effective mass: 

where n is a vector of unit length in the direction of the total momentum 'P (or the average 
velocity U ) .  For an isotropic electron-phonon interaction, one may replace (n - by 
k 2 / D ,  where D is the number of space dimensions. In this case, equation (3.1) simplifies 
to 

Now the bipolaron ground-state energy will be considered. At z1 = 0 one obtains, from 
equation (2.10), the energy functional 

k 

with the expression for the coefficients Ck 

The equation for parameter a takes the form 

(3.3) 

(3.4) 

(3.5) 

The SchrBdinger equation for the bipolaron at rest is --termined by .... functional 

[g +g +U(TI,T~;@OO) @ o ( r l r T z ) = ~ o 4 O ( T I I T 2 )  (3.6) 

derivative 8E[4J84;  = 0 which results in the integral-differential equation 

I 
with the effective potential 

(3.7) 
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Note the translational degeneracy of equation (3.6): if &(rl, rz) is a solution then 
&(rl + r o ,  r z t  rn) is~ilso a solution to the same equation with the same energy. Choosing 
a particular solution means fixing a point somewhere in space. Afterwards, equation (3.6) 
and its solutions are completely determined. 

Alternatively, the above equations can also be formulated as a variational problem 
which is useful in numerical calculations. The ground-state energy E0 can be defined as 
the minimum of the functional E [ ~ o ] .  The average kinetic energies of both electrons are 
equal due to symmetry and one arrives at the functional 

E[&] = r +  0 

T = -  hZ / d r  1 dr-2 IVICO(~I, TZ)I' 
m 

Now we specify the electron-phonon interaction for the case of the Peh-Frohlich 
optical polarons for which the phonon frequency does not depend on the wavevector: 
6& = OD.  According to a paper by Peeters et al [19], one has in a D-dimensional space ' 

where V is the volume of a D-dimensional 'crystal' and r(x) is the gamma function. At 
D = 3, one mives at the standard electron-phonon interaction with conventional phonon 
frequency upD = oL0 and dimensionless electron-phonon coupling constant 

(3.10) 

Here, e is the electron charge and E ,  (€0 )  is the high-frequency (static) dielectric constant. 
With parametrization (3.9), one obtains 

where S(r )  can be expressed as a sum of modified Bessel and Struve functions: 

To describe the direct interaction between electrons, we choose the Coulomb-type 
potential 

(3.13) 
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For D = 3, the dimensionless Coulomb coupling constant takes the form 

(3.14) 

Inserting equations (3.1 I )  and (3.13) into (3.Q the average potential energy of a large 
bipolaron, gives 

(3.15) 

where the symmetry of the wavefunctions is taken into account. 

lim,,o S ( r / n ) / a  = l / ( Z r ) ,  from which we obtain the average potential energy 
Note that in the strong-coupling limit a --f 0 and from equation (3.11) we have 

(3.16) 

The energy functional (3.8) for 3D bipolarons with potential energy given by equation (3.16) 
appeared first in the pioneering paper by Pekar and Tomasevich I201 as a starting point for 
Pekar's adiabatic approach to the bipolaron problem. The very name bipohron has been 
given to this quasiparticle in the cited paper albeit the authors reached a wrong conclusion 
on the bipolaron mtabiliry. Here, we start from the Frohlich-type Hamiltonian and find 
the same functional as the leading approximation. 

4. Applications to ID bipolarons 

In what follows, we introduce the scaled electron-phonon coupling constant [19-211 

r w  - 11/21 
01' - 0 1  

D -  DJ;i 2 l - (D/2)  ' 
(4.1) 

Similarly, we define a scaled Coulomb coupling constant Ug so that the ratio UD/LYD = 
Ub/orb remains the same. At D = 3, we have dD = CY~D and Uio = Us,, but 
renormalization (4.1) of the electron-phonon coupling constant is necessary to obtain finite 
results when D + 1. To derive the equation for the strong-coupling limit in its final form, 
it is convenient to perform a scaling 

(4.2) 
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To preserve the normalization of the wavefunction, one must also perform the scaling of 
the wavefunction 

The effective potential then transforms as follows: 

Finally, we arrive, therefore, at the Schrodinger equation ( p i  = -iVi): 

with dimensionless scaled energy: EO = E o / @ w D ~ ~ )  and potential 

The average potential energy is determined by 

(4.7) 

The average kinetic energy is the same as that given in equation (3.8) except for the factor 
h z / m  (because of scaling (4.2), (4.3)). 

Equation (3.2) for the bipolaron effective mass together with equation (3.9) and the 
same strong-coupling scaling leads to the expression 

(4.8) 



7934 P Vansant et al 

To apply the above equations to the ID bipolaron case, e.g. to equation (4.7), one has 
to use the relation 

(4.9) 

where r is a D-dimensional vector and z is its component dong the direction of the easy 
motion of the bipolaron. From equation (3.12), one obtains the expression 

(4.10) 

Inserting now equations (4.9) and (4.10) into (4.7), one arrives at the corresponding 
expressions for the average potential energy in ID  

z1 -2; ZI + z z - z ;  - 4  
4 0  

(4.1 1) 

To expand 0 in inverse powers of a', a change of variable is performed in the integral of 
equation (4.11) 

(4.12) 

resulting in the following representation for 0: 

Taking the limit aiD -+ 00 in equation (4.13), we write down the strong-coupling 
expansion up to terms of order l/afD 

1 -  0 = ir, + --U1 + ... 
f f fD 

(4.14) 

where the linear term disappears because of integration over z: and where 00 and 01 are 
given by equations 

00 =2+Jdzj  I & ( z I , z I ) ~ ~  - 4 f i  dzid~zdz{ I@o~(zJ,z~)I~I@o~(zI,z~)I~ 

and 

(4.15) J OllD 

(4.16) 
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The minimum of the potential energy is reached at some finite value of b, as follows from 
equation (4.16). This means that a,  which equals b/aFD, will indeed tend to zero in the 
strong-coupling limit and that the parameter M = 2m/a2 in equation (2.18) behaves, at 
large aiD, as M - ai:. To calculate the leading term of the strong-coupling expansion, one 
may deal with only. 

The corresponding effective potential in the nonlinear effective Schradinger equation 
(4.5) can be obtained in the same manner and is of the form 

U(ZI.ZZ; 40) =4& ~ Z I  d z z d Z ; 4 ~ ( 2 1 , ~ 2 ) 4 ~ ( ~ 1 , ~ ; )  

U;, (4.17) dzl [&(zI, 2; )  + ~;(ZZ, 4)1+ 2,6(zi - ZZ). 

s 
s - 4& 

The same limit D + 1 for the effective mass of equation (4.8) creates no problems. Using 
the symmetry of the wavefunction @&I, ZZ), it can be written as follows: 

(4.18) 

We convince ourselves that, for large aiD, the bipolaron effective mass and parameter M 
are both proportional to CY;:, that is, M is indeed close to m'. Similar conclusions hold for 
D = 2. 3. For instance. at D = 3 we have, from equation (3.1 I), 

(4.19) 

At large a j ~ ,  argument r will also be large and, as a consequence, the second term will not 
contribute. We arrive then at the conventional potential energy (3.16). 

To conclude, we have presented a systematic study of the equations describing large 
bipolarons in a strong-coupling regime in spaces with an arbitrary dimensionality. Some 
of these equations are simiIar to the ones used previously for the 3D case. The numerical 
study of the I D  bipolaron case for the ground and excited states based on these equations 
is given in [17]. 

1 
2r 

s ( r )  = -(I -e-"). 
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